BOB半岛如今,大部分开发者都是通过waterfall+bidding混合模式获得更高广告价格和广告填充。那么,什么是waterfall?什么是bidding?它们是如何运行的?本文分析其广告流量分发的逻辑和思路,希望对你有所启发。
目前绝大部分开发者通过waterfall+bidding混合模式,以期获得更高的广告价格和更多的广告填充。
但也有很多运营同学,对于waterfall+bidding的配置存在很多的疑问,因此本文主要解答在广告运营中,waterfall和bidding配置中的要点和可能存在的问题。
waterfall是串行模式,广告聚合系统根据基于历史数据的配置,从高价到低价依次向广告平台给出价格询价,直到有广告平台接受价格,此时的价格就是所有广告平台可以接受的最高的价格。
bidding则是并行模式,广告聚合系统同时向配置的各广告平台发起询价,各广告平台返回报价,媒体选择报价最高的广告平台BOB半岛,此时的价格是所有广告平台可以给出的最高价格。
这里可以看出两种模式的差异。waterfall是先预设价格,分次降序询价,直到有广告平台接受价格。而bidding则反之,无预设价格(可以设置底价),一次询价,价高者得。
waterfall基于历史数据设置价格,这个历史数据是多久的数据,冷启动没有历史数据怎么办市场上预算是千变万化的,历史数据能否真实反应当下的价格,运营同学能否及时根据市场情况调整价格串行的模式也意味着如果层级过多,广告请求时长会很长,造成前端展现延迟,影响用户体验。而以上的问题,bidding模式均不存在,因此对于开发者来说,bidding无疑更好的模式。在当下,虽然主流的广告平台大多支持了bidding模式,但也有很多中小型平台对bidding的支持还不完善,因此短时间内,纯bidding模式还不现实,waterfall+bidding混合模式依然是开发者的主流。bidding既然这么好,为什么在waterfall稳定运行了多年之后,bidding才姗姗来迟。一方面是技术原因,bidding对于广告平台的出价能力要求更高,广告平台对于流量需要一次性出价,而不再像之前通过waterfall试探。另外一方面也有利益原因,相比于waterfall,bidding模式下广告平台浑水摸鱼的空间变得更小。无论如何bidding取代waterfall是大势。
优先请求Bidding,Bidding胜出者会和传统瀑布流中的各个分层进行比较,最终让出价最高的平台获得展示机会(如Bidding胜出者高于瀑布流的第一层价格,则不再请求瀑布流);Bidding和瀑布流同时请求,两者比价,最终价高者得。两种模式整体差别不大。
这样的优化一定程度上可以提升整体的效率,但竞价逻辑变得更加复杂,因此是否需要采纳还需要产品自行决策。
无论Bidding还是瀑布流,两者只是竞价模式的区别,其中的配置才是关键。这里有几个要点是配置中需要特别关注的。
不管是bidding还是waterfall,都需要有足够的广告平台进行竞争,才能使利益更大化,广告平台较少都体现不出聚合的优势。所以建议在预算的情况下,至少配置4~6家广告平台,以寻求竞争最大化BOB半岛,提升填充和价格。waterfall的层级需要精细化,不能太少也不能太多。无脑堆砌瀑布流层级BOB半岛,虽然一定程度上可以提升ecpm,但瀑布流是串行结构,过多的瀑布流层级会显著影响广告的耗时,尤其在一些网络条件不是很好的地区,问题会更加显著。因此对于曝光较少的层级可以选择合并或者移除。瀑布流层级太少也存在问题,价格梯度不平滑,使得梯度间的价格收益被抹平。价格梯度上,建议低层级价格梯度20%,高层及价格梯度50%来进行梯度区分。waterfall需要经常调整,但频繁的调整也会存在问题。广告平台机器学习需要时间和数据,因此对于陌生的流量,平台倾向于出高价来获取流量。虽然短期可以提升收益,但长期来看,频繁更换id,调整waterfall配置并不利于广告稳定的获取,长期甚至会影响广告平台对于开发者的评价,反而得不偿失。不同的地区和用户群体,也需要使用不同的配置策略。发达地区的用户、手机价格更高的用户可以配置更高的价格来获取更高的收益,欠发达地区用户。手机价格低的用户可以减少高价层级的配置BOB半岛,降低广告请求时长。这都是常见的策略。对于同一个广告平台同时配置在bidding和waterfallBOB半岛,其实并无太大必要。同一个平台对于同一流量,waterfall和bidding的价格不会有很大的差距,而因为waterfall梯度的原因,往往是bidding获胜,最终结果是该平台在waterfall的曝光减少,进一步导致在waterfall价格的下降。因此对于同时支持waterfall和bidding的平台,可以在早期同时配置进行AB测试,在稳定后减少在waterfall中的配置。一个好的广告策略配置,最终呈现的结果是,从价格上来看,曝光呈现价格正态分布,曝光正态分布意味着既没有把流量贱卖,又尽可能的获得了高价(可以思考一下这个问题)从填充上来看,能实现95%以上的填充率,基本上可以认为接近了广告收益的上限了。